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Abstract

Koizumi et al. [5] proposed the omnibus test statistics using the sample
skewness and kurtosis defined by Mardia [7] and Srivastava [16]. However,
none of these statistics account for the covariance between skewness and
kurtosis, which is not negligible for small sample size. In this paper, we
consider the multivariate normality tests based on the sample measures of
multivariate skewness and kurtosis defined by Srivastava [16]. We propose
some new test statistics, which are taken into consideration the covariance
between skewness and kurtosis. In order to evaluate accuracy of proposed test
statistics, the numerical results by Monte Carlo simulation for some selected
values of parameters are presented.

1. Introduction

For univariate sample case, the test statistic using order statistic
derived by Shapiro and Wilk [15] is one of the most famous and essential
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tests for normality. Multivariate extensions of the Shapiro-Wilk test were
proposed by Malkovich and Afifi [6], Royston [13], Srivastava and Hui
[17] and so on. Another approach for testing normality uses sample
skewness and kurtosis separately. Jarque and Bera [4] proposed the
bivariate test by using univariate sample skewness and kurtosis. The
improved Jarque-Bera (JB) test statistics have been considered by many
authors (see, e.g., Urzua [18] and Nakagawa et al. [10]).

Definitions of multivariate skewness and kurtosis are considered by
many authors (see, e.g., Mardia [7, 8], Isogai [3], Oja [11], and Srivastava
[16]). Mardia and Foster [9] proposed the omnibus test statistics by using
Mardia’s sample skewness and kurtosis, which are considered the
covariance between skewness and kurtosis. The multivariate JB (MJB type)

test statistics using Srivastava’s sample skewness and kurtosis that are
asymptotically distributed as xz -distribution were proposed by Koizumi

et al. [5]. Enomoto et al. [2] proposed an improved test statistic by taking
account of the variance of test statistic proposed by Koizumi et al. [5].
Furthermore, for small sample size, the test statistic proposed by
Enomoto et al. [2] is improved accuracy about the upper percentiles, but
the shape of the distribution is not improved. Additionally, none of these
statistics account for the covariance between skewness and kurtosis,

which is not negligible.

In this paper, we consider the multivariate normality tests based on
the sample measures of multivariate skewness and kurtosis defined by
Srivastava [16]. We propose some new test statistics, which are taken into
consideration the covariance between skewness and kurtosis. We give the
numerical results by Monte Carlo simulation for some selected values of

parameters in order to evaluate accuracy of proposed test statistics.

2. Srivastava’s Measures of Multivariate
Skewness and Kurtosis

Let x be a p-dimensional random vector with mean vector p and

covariance matrix X =TD,I", where T =(y1,Y2,...,Yp) 1is an
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orthogonal matrix and D, = diag(Aq,%g, ..., &, ). Note that Ay,2g, ..., A,

are the eigenvalues of Y. Then, Srivastava [16] defined the population

measures of multivariate skewness and kurtosis as

2

B1p=—z (yz )] ,

respectively, where y; = yix and 0, = yipn (i =1, 2, ..., p). We note that
Bi p =0, By , = 3 under a multivariate normal population.
Let xq, x9,..., xy be samples of size N from a multivariate

population. Let ¥ and S = HD,H' be the sample mean vector and

sample covariance matrix given as

N
1 _ !
S = NZ(xJ -X)(x; -X),
Jj=1
respectively, where H = (hy, hy, ..., h,,) is an orthogonal matrix and

D, = diag(o;, og, ..., ®,). We note that
; = hSh; NZ(yU )P, i=12 .., p,

S ) _ 1N
where  y; = hix; @i=12 ..,p,j=12 ..,N),y;, =N lzj':lyij

(i=1,2,..., p). Then, Srivastava [16] defined the sample measures of

multivariate skewness and kurtosis as
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respectively.

3. Omnibus Test Statistics Using Multivariate

Skewness and Kurtosis

Srivastava [16] and Koizumi et al. [5] show that the sample skewness

and kurtosis are distributed as

pblz,p d__2 b2,p—E[b2,p]

E[b? ] e JVar[by ]

respectively. Moreover, for large N, Srivastava [16] obtained the

4 N, 1),

expectation of bﬁ p and the expectation and variance of b, , as

6
Ebfp] =« Blby,]=3 Varlby ,]=

24
pN’

respectively. Okamoto and Seo [12] derived the expectation of b12 p» and

Seo and Ariga [14] derived the expectation and variance of by ,, as

___6N-2)
PO )= i

24N(N - 2)(N - 3)
p(N +1)*(N +3)(N +5)

3(NV -1
Elby )= D vy, )=

respectively. Koizumi et al. [5] proposed test statistic as

b, (by, -3)
MJB = Np{ Lp by =9) }imiﬂ. (1)

6 24
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(1) is not considered the covariance between skewness and kurtosis. Thus,
in this section, we propose Wald type test statistics, which are taken into
consideration the covariance between skewness and kurtosis, and also

propose MJB type test statistics. Enomoto et al. [2] obtained the

covariance between bi? p and by ,, as

216N(N - 2)(N - 3)
p(N +1*(N +3)(N+5)(N+7)

Cov[bi ,, by, ] = N =2 3.

Furthermore, we give the correlation of bﬁ p and by ,, by using the same

way as Enomoto et al. [2] as follows:

C 2 _ 27(N - 3)(N + 3)(N +9) ‘
orrlbi. p- bz.p \/NZ(N +7)(N® + 37N% + 11N - 313)

Since p(N +1)(N + 3)bfp/{6(N - 2)} is distributed as X?,-distribution,

we obtain the expectation and variance of bﬁ p as follows:

Jar |Pi1
o) i

Var [‘/E} A2 p- 2{r[p;1}}2 .

TN+ DN +3) "

Further, we obtain the covariance between b12 p and by , by using a

Taylor series expansion as

Cov[,[bfp, bz,p:l ~ ﬁ\/T]COV [blz,p, b2,p]
L.p
- 18N(N - 3) 6(N - 2) .
SN DN NN N D 3 OV )
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Therefore, we propose the Wald type test statistic as
cr = bRVR'bg, @)

where

’

br = {Jbﬁp ~E bl |, ba, _%}

and

Var [wlblz,p} Cov [1/512,1; , bz,p}
24 )
Cov | b b3, | 2

Also, the test statistics for sample skewness using the Wilson-Hilferty

Vg =

transformation or the central limit theorem are obtained as

W) = [{w bﬁp}% s 2 1] [lj% 4 N, 1),

6(N - 2) 9p 9p
p2, -8
L TN 4
pN

Seo and Ariga [14] proposed the normalizing transformation test statistic

for sample kurtosis as
Np ~by p+3 , B(p +2) d
= 4= - ' —L = 115 N(, 1).
ENT = o4 { e TN T (0,1)

Therefore, we propose the MJB type test statistics using W(bﬁ p) or

U(bﬁp) and zy7 as
Wiy = WbE, ) + 2%, 3)

Snr = U®BE ,)? + 2% 4)
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Moreover, we obtain the covariance between W(bi2 p) and zyp by using

a Taylor series expansion as

2
2 _pP(N+1)(N+3) [N NN -2) s 2
Cov [W(bi,p), znr] = 24(N - 2) 3 {(N T3y Y (b1, b2, ]
3 2
__ 33N2(N-3) [ N(N-2) 13 LO(N2)
C(N+1)(N+5)(N+7) |[(N+1)(N+3) ’
Then, we propose the Wald type test statistic as
ew = biyVirtby, (5)
where
by = {W(b]?,p)7 ZnT ) s
and
1 Cov [W(bﬁp), znT |

Viy =
Cov [W(bip), ZNT] 1

Another test statistic for sample skewness using the central limit

theorem is obtained as

b - 6(N - 2)
w2 v P (N+1)(N+3) g
U (bl,p)_ 6 '_Zp(N—2) —)N(O, 1).

p(N +1)(N + 3)
For sample kurtosis, we propose the standardized test statistic U (b2’ » ),

and Seo and Ariga [14] proposed the standardized test statistic U *(b2’ p)

as

Uy, ) - 2N fbor - %} 4, N0, 1),
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+1%(N + + -
O LS e TR PR

respectively. Then, we propose MdJB type test statistics using U *(big p)

and U™ (by, ) or U(by ) as
Sy = U (b7, +U"(bz,), ©)

S}k\/' = U*(b12,p )2 + U(b2,p )2’ (7)

and we propose the Wald type test statistics as

ey = byVi'by, ®
civ = by Vi by, ©
where
by = {82 - S kg b _M}'
N L.p (N +1)(N +3)’ 2,p N+1 [’
2 6N-2 )
Ve o ) Cov (6 . bz, ]
Mo 2 24N(N - 2)(N -3) |
COV [bl,p9 b2,p] 5
p(N +1)*(N + 3)(N +5)
and
E{M}z COV [blz b ]
Vi =|p LIN+1)(N +3) 22 2pl|
Cov[bf ,, by ] —

The Wald type test statistics and MJB type test statistics (2)-(9) are

distributed as x% distribution under the normality.
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4. Simulation Studies

The accuracies of upper percentiles, type I errors, powers and relative
errors for upper percentiles of (1)-(9) are evaluated via a Monte Carlo
simulation study, where (2)-(9) are derived in this paper and (1) is
proposed by Koizumi et al. [5]. Simulation parameters are as follows:
p =3, 10, 20, 30, N = 20, 50, 100, 200, 400, 800 (p < N); and significance
level o = 0.05. As a numerical experiment, we carry out 1,000,000

replications.

Table 1 gives the values of the upper 5 percentiles of (1)-(9). The

lowest row of tables shows theoretical values for the x2 -distributions.

When the number of samples is about 50, (2) is closer to the X2 -distribution
rather than (3)-(9) for all dimensions. We confirm the following tendency
about the test statistics (3)-(9). When p is small, the upper percentiles of
(8) are closer to the xz -distribution rather than (4)-(9). When the number
of dimensions is about 10, the Wald type test statistic (5) has good
accuracy rather than MJB type test statistic (3). (9) converges in the
xz -distribution when the number of dimensions is about 20. For large p,

the Wald type test statistic (9) has good accuracy rather than MJB type
test statistic (7). Similarly, the Wald type test statistic (8) has good
accuracy rather than MdJB type test statistic (6) when p is large. For MJB
type test statistics (6) and (7), (7) has good accuracy rather than (6). For
the Wald type test statistics (8) and (9), (9) has good accuracy rather than

(8) when the number of dimensions is about 10. (4) converges in the
Xz -distribution when sample size increases. For (3) and (4), (4) has good

accuracy rather than (3) for many parameters. In order to obtain the
values of relative errors for upper percentiles in Table 5, the upper

percentiles for (1) is listed.
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Table 1. Upper 5 percentiles

CR Wyt S NT ‘w S N S}kv CN c}kv M.JB

@) 3) 4) ®) (6) ) ® € ©)

3 20 5.004 6.153 4.728 5.209 7.834 6.214 9.658 5.571 | 6.801
50 5909 6.048 5.661 5.698 7.330 6.457 8.007 3.880 | 8.445
100 | 5.989 5.927 5990 5.803 6.946 6.520 7.245 6.618 | 8.994
200 | 5.955 5.889 6.193 5.813 6.712 6.481 6.853 4.276 | 9.263
400 | 5936 5.858 6.286 5815 6.557 6.482 6.616 6.480 | 9.376
800 | 5.935 5843 6.374 5825 6.524 6.440 6.548 6.481 | 9.468

0 5.992 9.488

10 20 5.334 7.200 5.626 5.740 7.924 6.121 9.165 5.398 | 15.00
50 5912 6.737 5900 6.083 7.116 6.278 7.485 6.065 | 17.89
100 | 5.981 6.447 6.048 6.120 6.710 6.227 6.770 6.163 | 18.87
200 | 5973 6.230 6.107 6.092 6.449 6.217 6.435 6.158 | 19.33
400 | 5.980 6.106 6.113 6.023 6.298 6.176 6.287 6.156 | 19.53
800 | 5.969 6.041 6.116 6.008 6.213 6.151 6.191 6.126 | 19.63

0 5.992 19.68

20 50 5969 7.007 6.200 6.200 7.236 6.368 7.324 5.974 | 29.81
100 | 6.016 6.555 6.098 6.222 6.693 6.263 6.638 6.054 | 31.32
200 | 5994 6.294 6.062 6.137 6.376 6.1563 6.294 6.029 | 32.03
400 | 6.001 6.155 6.0560 6.077 6.214 6.116 6.168 6.036 | 32.37
800 | 5975 6.060 6.018 6.031 6.105 6.061 6.078 6.016 | 32.53

o0 5.992 32.67

30 50 6.005 7.117 6.441 6.286 7.329 6.472 7.313 5.993 | 41.10
100 | 6.031 6.629 6.183 6.245 6.734 6.299 6.603 6.039 | 43.13
200 | 6.015 6.337 6.107 6.140 6.410 6.1568 6.288 6.030 | 44.12
400 | 5.999 6.161 6.043 6.068 6.199 6.080 6.135 6.008 | 44.55
800 | 5.987 6.081 6.024 6.031 6.104 6.040 6.067 6.007 | 44.75

0 5.992 44.99
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Table 2 gives the values for type I errors of (1)-(9). The values of (9)
are closer to 0.05 when p is large. The values of (2) and (4) are the best
for many parameters. Furthermore, (2) and (4) are closer to 0.05 when the
number of samples is about 50. When sample size is small, the test
statistics except (8) are closer to 0.05 rather than (1). When the number of
dimensions is about 10, (5) has good accuracy rather than (3). (6) is closer to
0.05 rather than (8) for many parameters. When p and N increase, (9) has
good accuracy rather than (7). For (6) and (7), (7) has good accuracy
rather than (6). For (8) and (9), (9) has good accuracy rather than (8).

Table 2. Type I errors

¢cR  Wnr  SnT cw Sn Sy N cN  MJB

@ 3) 4 ®) ) (M) ® ) )
3 | 20 | 0033 0053 0032 0033 0066 0052 0.103 0.046 0.021

50 | 0.049 0.0561 0.045 0.043 0.063 0.054 0.078 0.056 0.037
100 | 0.050 0.049 0.050 0.045 0.061 0.056 0.068 0.0568 0.043
200 | 0.049 0.048 0.0563 0.045 0.060 0.056 0.063 0.058 0.046
400 | 0.049 0.047 0.055 0.045 0.058 0.0567 0.060 0.058 0.048
800 | 0.049 0.046 0.056 0.046 0.059 0.0567 0.0569 0.058 0.050
10 | 20 | 0.038 0.076 0.043 0.044 0.077 0.051 0.110 0.043 0.013
50 | 0.048 0.066 0.048 0.052 0.067 0.054 0.077 0.0561 0.032
100 | 0.050 0.060 0.051 0.053 0.062 0.054 0.065 0.063 0.041
200 | 0.060 0.056 0.052 0.0563 0.058 0.054 0.058 0.053 0.046
400 | 0.0560 0.0563 0.052 0.051 0.056 0.053 0.056 0.053 0.048
800 | 0.049 0.0561 0.0562 0.050 0.054 0.053 0.054 0.053 0.049
20 | 50 | 0.049 0.072 0.054 0.055 0.072 0.056 0.078 0.050 0.027
100 | 0.051 0.063 0.052 0.056 0.063 0.055 0.064 0.0561 0.037
200 | 0.0560 0.0567 0.052 0.054 0.058 0.053 0.057 0.051 0.043
400 | 0.0560 0.054 0.061 0.052 0.055 0.053 0.054 0.051 0.047
800 | 0.060 0.052 0.0561 0.0561 0.052 0.0561 0.0562 0.051 0.048
30 | 50 | 0.0560 0.074 0.060 0.057 0.076 0.059 0.079 0.050 0.023
100 | 0.051 0.065 0.054 0.056 0.065 0.056 0.064 0.051 0.035
200 | 0.061 0.0568 0.0563 0.054 0.059 0.053 0.057 0.0561 0.042
400 | 0.060 0.054 0.0561 0.052 0.055 0.052 0.0563 0.050 0.046
800 | 0.060 0.052 0.0561 0.0561 0.052 0.0561 0.0562 0.050 0.048

0 0.050
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Table 3 gives the values of the powers for (1)-(9). We performed
simulations under multivariate ¢-distribution with 5 degrees of freedom.
Test statistics (2)-(9) are more powerful rather than (1) for many
parameters. (3) is more powerful rather than (5). For many parameters,
(8) is more powerful rather than (6). Although the values of power for (2)

are not the best, its values have powers comparable to (3)-(9).

Table 3. Powers under multivariate ¢-distribution

¢k Wypr SN W Sy Sy N ¢cN  MJB

@ 3 @ ®) ©) Q) ® ) ®
3|20 0299 0312 0274 0248 0408 0.358 0.456 0.335 0.267

50 | 0.681 0.604 0.595 0.550 0.728 0.693 0.748 0.696 0.646
100 | 0.920 0.873 0.869 0.860 0.929 0920 0.935 0.924 0.897
200 | 0.996 0.992 0.992 0.992 0.996 0.996 0.997 0.996 0.993
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 | 20 | 0.507 0.562 0.477 0489 0.642 0.5683 0.657 0.544 0.435
50 | 0.922 0.918 0.909 0.899 0.947 0.932 0.949 0.928 0.880
100 | 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.995
200 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 | 50 | 0.980 0.982 0.979 0977 0.998 0.984 0.988 0.982 0.952
100 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 | 50 | 0.995 0995 0.994 0.994 0.997 0.996 0.997 0.995 0.979
100 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4 gives the values of the powers for (1)-(9), where each element

of the sample is generated using X% -distribution. Test statistics (2)-(9) are

more powerful rather than (1) for many parameters. (8) is more powerful
rather than (6) for small p and N. (3) is more powerful rather than (5).

Although the values of power for (2) are not the best, its values have

powers comparable to (3)-(9).

Table 4. Powers under 2 -distribution

ol ¢k Wnr Snr W Sy SN N ¢cN  MJB
2 (3) 4) (5) ®) (7 ®) ) 1)

3 20 0.334 0.328 0.298 0.263 0.414 0.394 0.469 0.395 0.264
50 | 0.799 0.730 0.770 0.709 0.809 0.805 0.828 0.814 0.756
100 | 0.956 0.945 0.962 0.937 0.968 0.967 0.968 0.966 0.960
200 | 0.997 0.996 0.998 0.995 0.998 0.998 0.998 0.998 0.998
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 | 20 [ 0.221 0258 0178 0.198 0.322 0.287 0.344 0.267 0.154
50 | 0.574 0.593 0.583 0.531 0.663 0.647 0.648 0.625 0.586
100 | 0.878 0.888 0.898 0.856 0.919 0.914 0.905 0.900 0.903
200 | 0.992 0.994 0.995 0.990 0.996 0.996 0.995 0.994 0.995
400 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 50 0.395 0.436 0.394 0.370 0.498 0.473 0.471 0.436 0.386
100 | 0.699 0.736 0.733 0.675 0.781 0.769 0.746 0.733  0.729
200 | 0.954 0.964 0.966 0.948 00973 0.971 0.964 0.962 0.964
400 | 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000  1.000
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 | 50 | 0.309 0.356 0.299 0.293 0.410 0.382 0.382 0.342 0.278
100 | 0.548 0597 0.580 0.527 0.647 0.630 0.600 0581 0.563
200 | 0.871 0.895 0.896 0.859 0.914 0.998 0.891 0.885 0.879
400 | 0.996 0.997 0.997 0.995 0.998 1.000 0.996 0.996 0.995
800 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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It is note that a multivariate ¢-distribution is symmetric and has

heavy tails rather than a multivariate normal distribution. Further, a
xz -distribution has asymmetric and its kurtosis also differs from a

normal distribution. It seem that the difference between each power do

not have a distinctive feature.

Table 5 gives relative errors for the upper percentiles of (1)-(9). When
N is small, there is difference between (1) and X% +1 -distribution. The

Wald type test statistic (2) has good accuracy rather than (1) for all
parameters. For N and p are small, (2)-(9) have good accuracy rather than
(1). When the number of dimensions is about 20, (9) has good accuracy
rather than (1). For many parameters, (5) has good accuracy rather than

1).

In conclusion, most of test statistics (2)-(9) have good accuracy rather
than (1) for many parameters. Peculiarly, the Wald type test statistic (2)
is the best at the point of the upper percentiles, type I errors and powers.
When the number of dimensions is about 10, the Wald type test statistic
(5) has good accuracy rather than MJB type test statistic (3).
Furthermore, (2) and (5) have good shapes of their distributions even for
small sample size. However, other test statistics do not have good shapes
of their distributions when sample size is small. For large p, the Wald

type test statistic (9) has also good accuracy rather than (3)-(8) and (1).
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Table 5. Relative errors for the upper percentiles

CR Wnr SNt aw Sy Sy e &N  MJB

@ 3 4 ®) ® O ® ) &)
3 20 [-0.197 0.026 -0267 -0.150 0235 0.036 0.380 -0.076 -0.395

50 |[-0.014 0.009 -0.058 —-0.051 0.183 0.072 0.252 —-0.544 -0.124
100 0.000 -0.011 0.000 -0.033 0.137 0.081 0.173 0.095 -0.055
200 |-0.006 —0.017 0.032 -0.031 0.107 0.075 0.126 —0.401 -0.024
400 |-0.009 -0.023 0.047 —-0.030 0.086 0.076 0.094 0.075 —0.012
800 |-0.010 -0.025 0.060 —-0.029 0.082 0.070 0.085 0.076 —0.002
10 20 |[-0.123 0.168 —-0.065 —0.044 0.244 0.021 0.346 —-0.110 -0.312
50 |—-0.014 0.111 -0.015 0.015 0.158 0.046 0.200 0.012 —-0.100
100 |-0.002 0.071 0.009 0.021 0.107 0.038 0.115 0.028 —0.043
200 |-0.003 0.038 0.019 0.017 0.071 0.036 0.069 0.027 -0.018
400 |-0.002 0.019 0.020 0.005 0.049 0.030 0.047 0.027 —0.007
800 |—0.004 0.008 0.020 0.003 0.036 0.026 0.032 0.022 —0.003
20 50 |—0.004 0.145 0.034 0.034 0.172 0.059 0.182 -0.003 -0.096
100 0.004 0.086 0.017 0.037 0.105 0.043 0.097 0.010 -0.043
200 0.000 0.048 0.012 0.024 0.060 0.026 0.048 0.006 —0.020
400 0.002 0.027 0.010 0.014 0.036 0.020 0.029 0.007 —0.009
800 |—-0.003 0.011 0.004 0.007 0.019 0.011 0.014 0.004 —0.004
30 50 0.002 0.158 0.070 0.047 0.182 0.074 0.181 0.000 —0.094
100 0.007 0.096 0.031 0.041 0.110 0.049 0.093 0.008 —0.043
200 0.004 0.055 0.019 0.024 0.065 0.027 0.047 0.006 —0.020
400 0.001 0.028 0.008 0.013 0.033 0.015 0.023 0.003 -0.010

800 |-0.001 0.015 0.005 0.007 0.018 0.008 0.012 0.003 —0.005

5. An Example for Multivariate Normality Tests

We illustrate the multivariate normality tests with real data given by
Brunner et al. [1]. Table 6 presents the values of y-GT for the 26

patients. The 26 patients whose gall bladders had to be removes in
consequence of a cholelithiasis (without a blockage of the ductus
choledochus) were selected to take part in a randomized study in which

26 of the patients were treated with a specific drug. The y-GT of each
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patient was determined before the operation (-1) and on days 3, 7, and

10 after the operation. The efficacy of the drug is represented by the

different profiles of the vy -GT, that is, the existence of an interaction

between treatment and time.

Table 6. The postoperative level of y-GT for the 26 patients with a

specific drug

Day after surgery Day after surgery
Patient| -1 3 7 10 Patient -1 3 7 10
1 44 12 10 9 26 50 30 29 35
5 15 14 14 15 27 13 21 29 15
6 8 10 9 9 29 7 8 7 9
8 12 17 28 31 33 7 14 25 19
9 7 26 29 22 36 11 11 12 15
11 8 10 9 12 37 192 157 92 66
12 32 226 118 76 38 14 12 20 16
18 109 104 66 48 42 24 9 10 12
14 53 49 50 49 44 9 14 16 13
17 56 162 111 79 45 16 32 28 20
21 11 15 26 12 47 9 13 12 13
24 38 100 47 67 49 19 14 13 12
25 13 167 139 110 50 8 10 10 11
Mean | 30.19 48.35 36.89 30.58

Table 7 gives the results for multivariate normality tests, where
significance level o = 0.05. For original data, we obtain that both
p-values are zero. Because each p-value is smaller than 0.05, the null
hypothesis of normality is rejected. Frequently, it is thought that the
pharmaceutical data 1is distributed as a log-normal distribution.
Therefore, the null hypothesis is accepted when we test after logarithm
transformation. That is, from results of normality tests, we cannot
assume that original data is distributed as a normal distribution. When
analyzing this data, we need to transformation or nonparametric analysis
on the data.



THE OMNIBUS TEST STATISTICS USING SRIVASTAVA'S ... 53

Table 7. The results for multivariate normality tests

Original data

CR WNr  SNT ‘w SNy SN CN N  MJB
2 ®3) (4) ) (6) (7 (€)) 9 1)
Test statistic| 101.4  44.2  190.9 36.5 466.4 395.1 301.1 3009 127.8

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Data of logarithmic transformation

¢k Wnr Snr W Sy SN eN ¢cN  MJB
2) 3) 4) (5) (6) (7 ®) ) e))
Test statistic | 1.31 2.27 1.35 1.53 2.21 1.76 1.26 1.20 5.72

p-value 0.520 0.322 0510 0.466 0.331 0414 0532 0.549 0.335
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