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Abstract 

Koizumi et al. [5] proposed the omnibus test statistics using the sample 
skewness and kurtosis defined by Mardia [7] and Srivastava [16]. However, 
none of these statistics account for the covariance between skewness and 
kurtosis, which is not negligible for small sample size. In this paper, we 
consider the multivariate normality tests based on the sample measures of 
multivariate skewness and kurtosis defined by Srivastava [16]. We propose 
some new test statistics, which are taken into consideration the covariance 
between skewness and kurtosis. In order to evaluate accuracy of proposed test 
statistics, the numerical results by Monte Carlo simulation for some selected 
values of parameters are presented. 

1. Introduction 

For univariate sample case, the test statistic using order statistic 
derived by Shapiro and Wilk [15] is one of the most famous and essential 
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tests for normality. Multivariate extensions of the Shapiro-Wilk test were 
proposed by Malkovich and Afifi [6], Royston [13], Srivastava and Hui 
[17] and so on. Another approach for testing normality uses sample 
skewness and kurtosis separately. Jarque and Bera [4] proposed the 
bivariate test by using univariate sample skewness and kurtosis. The 
improved Jarque-Bera (JB) test statistics have been considered by many 
authors (see, e.g., Urzúa [18] and Nakagawa et al. [10]). 

Definitions of multivariate skewness and kurtosis are considered by 
many authors (see, e.g., Mardia [7, 8], Isogai [3], Oja [11], and Srivastava 
[16]). Mardia and Foster [9] proposed the omnibus test statistics by using 
Mardia’s sample skewness and kurtosis, which are considered the 
covariance between skewness and kurtosis. The multivariate JB (MJB type) 
test statistics using Srivastava’s sample skewness and kurtosis that are 

asymptotically distributed as 2χ -distribution were proposed by Koizumi 

et al. [5]. Enomoto et al. [2] proposed an improved test statistic by taking 
account of the variance of test statistic proposed by Koizumi et al. [5]. 
Furthermore, for small sample size, the test statistic proposed by 
Enomoto et al. [2] is improved accuracy about the upper percentiles, but 
the shape of the distribution is not improved. Additionally, none of these 
statistics account for the covariance between skewness and kurtosis, 
which is not negligible. 

In this paper, we consider the multivariate normality tests based on 
the sample measures of multivariate skewness and kurtosis defined by 
Srivastava [16]. We propose some new test statistics, which are taken into 
consideration the covariance between skewness and kurtosis. We give the 
numerical results by Monte Carlo simulation for some selected values of 
parameters in order to evaluate accuracy of proposed test statistics. 

2. Srivastava’s Measures of Multivariate  
Skewness and Kurtosis 

Let x be a p-dimensional random vector with mean vector µ  and 

covariance matrix ,Γ′Γ=∑ λD  where ( )pγγγ ,,, …21=Γ  is an 
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orthogonal matrix and ( ).,,,diag 21 pD λλλ=λ …  Note that pλλλ ,,, 21 …  

are the eigenvalues of .∑  Then, Srivastava [16] defined the population 
measures of multivariate skewness and kurtosis as 

[( ) ] ,1
2

3

1

2
,1

2
3

















λ

θ−
=β ∑

=
i

ii
p

i
p

yE
p  

[( ) ] ,1
2

4

1
,2

i

ii
p

i
p

yE
p λ

θ−
=β ∑

=

 

respectively, where xiγ′=iy  and ( ).,,2,1 pii …=′=θ µiγ  We note that 

3,0 ,2
2
,1 =β=β pp  under a multivariate normal population. 

Let Nxxx ,,, 21 …  be samples of size N from a multivariate 

population. Let x  and HHDS ′= ω  be the sample mean vector and 

sample covariance matrix given as 
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respectively, where ( )pH hhh ,,, 21 …=  is an orthogonal matrix and 

( ).,,,diag 21 pD ωωω=ω …  We note that 
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1,,,2,1,,,2,1 ……xh  

( ).,,2,1 pi …=  Then, Srivastava [16] defined the sample measures of 

multivariate skewness and kurtosis as 
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respectively. 

3. Omnibus Test Statistics Using Multivariate  
Skewness and Kurtosis 

Srivastava [16] and Koizumi et al. [5] show that the sample skewness 
and kurtosis are distributed as 
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respectively. Moreover, for large N, Srivastava [16] obtained the 

expectation of 2
,1 pb  and the expectation and variance of pb ,2  as 
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respectively. Okamoto and Seo [12] derived the expectation of ,2
,1 pb  and 

Seo and Ariga [14] derived the expectation and variance of pb ,2  as 
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respectively. Koizumi et al. [5] proposed test statistic as 
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(1) is not considered the covariance between skewness and kurtosis. Thus, 
in this section, we propose Wald type test statistics, which are taken into 
consideration the covariance between skewness and kurtosis, and also 
propose MJB type test statistics. Enomoto et al. [2] obtained the 

covariance between 2
,1 pb  and pb ,2  as 
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Furthermore, we give the correlation of 2
,1 pb  and pb ,2  by using the same 

way as Enomoto et al. [2] as follows: 
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Since ( ) ( ) ( ){ }2631 2
,1 −++ NbNNp p  is distributed as 2

pχ -distribution, 

we obtain the expectation and variance of 2
,1 pb  as follows: 
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Further, we obtain the covariance between 2
,1 pb  and pb ,2  by using a 

Taylor series expansion as 
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Therefore, we propose the Wald type test statistic as 

,1
RRRR Vc bb −′=  (2) 
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Also, the test statistics for sample skewness using the Wilson-Hilferty 
transformation or the central limit theorem are obtained as 
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Seo and Ariga [14] proposed the normalizing transformation test statistic 
for sample kurtosis as 
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Therefore, we propose the MJB type test statistics using ( )2
,1 pbW  or 

( )2
,1 pbU  and NTz  as 

( ) ,222
,1 NTpNT zbWW +=   (3) 

( ) .222
,1 NTpNT zbUS +=   (4) 
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Moreover, we obtain the covariance between ( )2
,1 pbW  and NTz  by using 

a Taylor series expansion as 
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Then, we propose the Wald type test statistic as 

,1
WWWW Vc bb −′=  (5) 
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Another test statistic for sample skewness using the central limit 
theorem is obtained as 
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For sample kurtosis, we propose the standardized test statistic ( ),,2 pbU  

and Seo and Ariga [14] proposed the standardized test statistic ( )pbU ,2
∗  

as 
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respectively. Then, we propose MJB type test statistics using ( )2
,1 pbU∗  

and ( )pbU ,2
∗  or ( )pbU ,2  as 
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and we propose the Wald type test statistics as 
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The Wald type test statistics and MJB type test statistics (2)-(9) are 

distributed as 2
2χ  distribution under the normality. 
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4. Simulation Studies 

The accuracies of upper percentiles, type I errors, powers and relative 
errors for upper percentiles of (1)-(9) are evaluated via a Monte Carlo 
simulation study, where (2)-(9) are derived in this paper and (1) is 
proposed by Koizumi et al. [5]. Simulation parameters are as follows:       
p = 3, 10, 20, 30, N = 20, 50, 100, 200, 400, 800 ( );Np <  and significance 

level .05.0=α  As a numerical experiment, we carry out 1,000,000 
replications. 

Table 1 gives the values of the upper 5 percentiles of (1)-(9). The 

lowest row of tables shows theoretical values for the 2χ -distributions. 

When the number of samples is about 50, (2) is closer to the 2χ -distribution 

rather than (3)-(9) for all dimensions. We confirm the following tendency 
about the test statistics (3)-(9). When p is small, the upper percentiles of 

(3) are closer to the 2χ -distribution rather than (4)-(9). When the number 

of dimensions is about 10, the Wald type test statistic (5) has good 
accuracy rather than MJB type test statistic (3). (9) converges in the    

2χ -distribution when the number of dimensions is about 20. For large p, 

the Wald type test statistic (9) has good accuracy rather than MJB type 
test statistic (7). Similarly, the Wald type test statistic (8) has good 
accuracy rather than MJB type test statistic (6) when p is large. For MJB 
type test statistics (6) and (7), (7) has good accuracy rather than (6). For 
the Wald type test statistics (8) and (9), (9) has good accuracy rather than 
(8) when the number of dimensions is about 10. (4) converges in the     

2χ -distribution when sample size increases. For (3) and (4), (4) has good 

accuracy rather than (3) for many parameters. In order to obtain the 
values of relative errors for upper percentiles in Table 5, the upper 
percentiles for (1) is listed. 
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Table 1. Upper 5 percentiles 

Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 
p N 

(2) (3) (4) (5) (6) (7) (8) (9) (1) 

3 20 5.004 6.153 4.728 5.209 7.834 6.214 9.658 5.571 6.801 

 50 5.909 6.048 5.661 5.698 7.330 6.457 8.007 3.880 8.445 

 100 5.989 5.927 5.990 5.803 6.946 6.520 7.245 6.618 8.994 

 200 5.955 5.889 6.193 5.813 6.712 6.481 6.853 4.276 9.263 

 400 5.936 5.858 6.286 5.815 6.557 6.482 6.616 6.480 9.376 

 800 5.935 5.843 6.374 5.825 6.524 6.440 6.548 6.481 9.468 

 ∞  5.992        9.488 

10 20 5.334 7.200 5.626 5.740 7.924 6.121 9.165 5.398 15.00 

 50 5.912 6.737 5.900 6.083 7.116 6.278 7.485 6.065 17.89 

 100 5.981 6.447 6.048 6.120 6.710 6.227 6.770 6.163 18.87 

 200 5.973 6.230 6.107 6.092 6.449 6.217 6.435 6.158 19.33 

 400 5.980 6.106 6.113 6.023 6.298 6.176 6.287 6.156 19.53 

 800 5.969 6.041 6.116 6.008 6.213 6.151 6.191 6.126 19.63 

 ∞  5.992        19.68 

20 50 5.969 7.007 6.200 6.200 7.236 6.368 7.324 5.974 29.81 

 100 6.016 6.555 6.098 6.222 6.693 6.263 6.638 6.054 31.32 

 200 5.994 6.294 6.062 6.137 6.376 6.153 6.294 6.029 32.03 

 400 6.001 6.155 6.050 6.077 6.214 6.116 6.168 6.036 32.37 

 800 5.975 6.060 6.018 6.031 6.105 6.061 6.078 6.016 32.53 

 ∞  5.992        32.67 

30 50 6.005 7.117 6.441 6.286 7.329 6.472 7.313 5.993 41.10 

 100 6.031 6.629 6.183 6.245 6.734 6.299 6.603 6.039 43.13 

 200 6.015 6.337 6.107 6.140 6.410 6.158 6.288 6.030 44.12 

 400 5.999 6.161 6.043 6.068 6.199 6.080 6.135 6.008 44.55 

 800 5.987 6.081 6.024 6.031 6.104 6.040 6.067 6.007 44.75 

 ∞  5.992        44.99 
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Table 2 gives the values for type I errors of (1)-(9). The values of (9) 
are closer to 0.05 when p is large. The values of (2) and (4) are the best 
for many parameters. Furthermore, (2) and (4) are closer to 0.05 when the 
number of samples is about 50. When sample size is small, the test 
statistics except (8) are closer to 0.05 rather than (1). When the number of 
dimensions is about 10, (5) has good accuracy rather than (3). (6) is closer to 
0.05 rather than (8) for many parameters. When p and N increase, (9) has 
good accuracy rather than (7). For (6) and (7), (7) has good accuracy 
rather than (6). For (8) and (9), (9) has good accuracy rather than (8). 

Table 2. Type I errors 

Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 
p N 

(2) (3) (4) (5) (6) (7) (8) (9) (1) 

3 20 0.033 0.053 0.032 0.033 0.066 0.052 0.103 0.046 0.021 

 50 0.049 0.051 0.045 0.043 0.063 0.054 0.078 0.056 0.037 

 100 0.050 0.049 0.050 0.045 0.061 0.056 0.068 0.058 0.043 

 200 0.049 0.048 0.053 0.045 0.060 0.056 0.063 0.058 0.046 

 400 0.049 0.047 0.055 0.045 0.058 0.057 0.060 0.058 0.048 

 800 0.049 0.046 0.056 0.046 0.059 0.057 0.059 0.058 0.050 

10 20 0.038 0.076 0.043 0.044 0.077 0.051 0.110 0.043 0.013 

 50 0.048 0.066 0.048 0.052 0.067 0.054 0.077 0.051 0.032 

 100 0.050 0.060 0.051 0.053 0.062 0.054 0.065 0.053 0.041 

 200 0.050 0.056 0.052 0.053 0.058 0.054 0.058 0.053 0.046 

 400 0.050 0.053 0.052 0.051 0.056 0.053 0.056 0.053 0.048 

 800 0.049 0.051 0.052 0.050 0.054 0.053 0.054 0.053 0.049 

20 50 0.049 0.072 0.054 0.055 0.072 0.056 0.078 0.050 0.027 

 100 0.051 0.063 0.052 0.056 0.063 0.055 0.064 0.051 0.037 

 200 0.050 0.057 0.052 0.054 0.058 0.053 0.057 0.051 0.043 

 400 0.050 0.054 0.051 0.052 0.055 0.053 0.054 0.051 0.047 

 800 0.050 0.052 0.051 0.051 0.052 0.051 0.052 0.051 0.048 

30 50 0.050 0.074 0.060 0.057 0.076 0.059 0.079 0.050 0.023 

 100 0.051 0.065 0.054 0.056 0.065 0.056 0.064 0.051 0.035 

 200 0.051 0.058 0.053 0.054 0.059 0.053 0.057 0.051 0.042 

 400 0.050 0.054 0.051 0.052 0.055 0.052 0.053 0.050 0.046 

 800 0.050 0.052 0.051 0.051 0.052 0.051 0.052 0.050 0.048 

 ∞  0.050         
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Table 3 gives the values of the powers for (1)-(9). We performed 
simulations under multivariate t-distribution with 5 degrees of freedom. 
Test statistics (2)-(9) are more powerful rather than (1) for many 
parameters. (3) is more powerful rather than (5). For many parameters, 
(8) is more powerful rather than (6). Although the values of power for (2) 
are not the best, its values have powers comparable to (3)-(9). 

Table 3. Powers under multivariate t-distribution 

Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 
p N 

(2) (3) (4) (5) (6) (7) (8) (9) (1) 

3 20 0.299 0.312 0.274 0.248 0.408 0.358 0.456 0.335 0.267 

 50 0.681 0.604 0.595 0.550 0.728 0.693 0.748 0.696 0.646 

 100 0.920 0.873 0.869 0.860 0.929 0.920 0.935 0.924 0.897 

 200 0.996 0.992 0.992 0.992 0.996 0.996 0.997 0.996 0.993 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 20 0.507 0.562 0.477 0.489 0.642 0.583 0.657 0.544 0.435 

 50 0.922 0.918 0.909 0.899 0.947 0.932 0.949 0.928 0.880 

 100 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.995 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 50 0.980 0.982 0.979 0.977 0.998 0.984 0.988 0.982 0.952 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

30 50 0.995 0.995 0.994 0.994 0.997 0.996 0.997 0.995 0.979 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4 gives the values of the powers for (1)-(9), where each element 

of the sample is generated using 2
5χ -distribution. Test statistics (2)-(9) are 

more powerful rather than (1) for many parameters. (8) is more powerful 
rather than (6) for small p and N. (3) is more powerful rather than (5). 
Although the values of power for (2) are not the best, its values have 
powers comparable to (3)-(9). 

Table 4. Powers under 2χ -distribution 

Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 
p N 

(2) (3) (4) (5) (6) (7) (8) (9) (1) 

3 20 0.334 0.328 0.298 0.263 0.414 0.394 0.469 0.395 0.264 

 50 0.799 0.730 0.770 0.709 0.809 0.805 0.828 0.814 0.756 

 100 0.956 0.945 0.962 0.937 0.968 0.967 0.968 0.966 0.960 

 200 0.997 0.996 0.998 0.995 0.998 0.998 0.998 0.998 0.998 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 20 0.221 0.258 0.178 0.198 0.322 0.287 0.344 0.267 0.154 

 50 0.574 0.593 0.583 0.531 0.663 0.647 0.648 0.625 0.586 

 100 0.878 0.888 0.898 0.856 0.919 0.914 0.905 0.900 0.903 

 200 0.992 0.994 0.995 0.990 0.996 0.996 0.995 0.994 0.995 

 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 50 0.395 0.436 0.394 0.370 0.498 0.473 0.471 0.436 0.386 

 100 0.699 0.736 0.733 0.675 0.781 0.769 0.746 0.733 0.729 

 200 0.954 0.964 0.966 0.948 0.973 0.971 0.964 0.962 0.964 

 400 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

30 50 0.309 0.356 0.299 0.293 0.410 0.382 0.382 0.342 0.278 

 100 0.548 0.597 0.580 0.527 0.647 0.630 0.600 0.581 0.563 

 200 0.871 0.895 0.896 0.859 0.914 0.998 0.891 0.885 0.879 

 400 0.996 0.997 0.997 0.995 0.998 1.000 0.996 0.996 0.995 

 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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It is note that a multivariate t-distribution is symmetric and has 
heavy tails rather than a multivariate normal distribution. Further, a 

2χ -distribution has asymmetric and its kurtosis also differs from a 

normal distribution. It seem that the difference between each power do 
not have a distinctive feature. 

Table 5 gives relative errors for the upper percentiles of (1)-(9). When 

N is small, there is difference between (1) and 2
1+χp -distribution. The 

Wald type test statistic (2) has good accuracy rather than (1) for all 
parameters. For N and p are small, (2)-(9) have good accuracy rather than 
(1). When the number of dimensions is about 20, (9) has good accuracy 
rather than (1). For many parameters, (5) has good accuracy rather than 
(1). 

In conclusion, most of test statistics (2)-(9) have good accuracy rather 
than (1) for many parameters. Peculiarly, the Wald type test statistic (2) 
is the best at the point of the upper percentiles, type I errors and powers. 
When the number of dimensions is about 10, the Wald type test statistic 
(5) has good accuracy rather than MJB type test statistic (3). 
Furthermore, (2) and (5) have good shapes of their distributions even for 
small sample size. However, other test statistics do not have good shapes 
of their distributions when sample size is small. For large p, the Wald 
type test statistic (9) has also good accuracy rather than (3)-(8) and (1). 
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Table 5. Relative errors for the upper percentiles 

Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 
p N 

(2) (3) (4) (5) (6) (7) (8) (9) (1) 

3 20 – 0.197 0.026 – 0.267 – 0.150 0.235 0.036 0.380 – 0.076 – 0.395 

 50 – 0.014 0.009 – 0.058 – 0.051 0.183 0.072 0.252 – 0.544 – 0.124 

 100 0.000 – 0.011 0.000 – 0.033 0.137 0.081 0.173 0.095 – 0.055 

 200 – 0.006 – 0.017 0.032 – 0.031 0.107 0.075 0.126 – 0.401 – 0.024 

 400 – 0.009 – 0.023 0.047 – 0.030 0.086 0.076 0.094 0.075 – 0.012 

 800 – 0.010 – 0.025 0.060 – 0.029 0.082 0.070 0.085 0.076 – 0.002 

10 20 – 0.123 0.168 – 0.065 – 0.044 0.244 0.021 0.346 – 0.110 – 0.312 

 50 – 0.014 0.111 – 0.015 0.015 0.158 0.046 0.200 0.012 – 0.100 

 100 – 0.002 0.071 0.009 0.021 0.107 0.038 0.115 0.028 – 0.043 

 200 – 0.003 0.038 0.019 0.017 0.071 0.036 0.069 0.027 – 0.018 

 400 – 0.002 0.019 0.020 0.005 0.049 0.030 0.047 0.027 – 0.007 

 800 – 0.004 0.008 0.020 0.003 0.036 0.026 0.032 0.022 – 0.003 

20 50 – 0.004 0.145 0.034 0.034 0.172 0.059 0.182 – 0.003 – 0.096 

 100 0.004 0.086 0.017 0.037 0.105 0.043 0.097 0.010 – 0.043 

 200 0.000 0.048 0.012 0.024 0.060 0.026 0.048 0.006 – 0.020 

 400 0.002 0.027 0.010 0.014 0.036 0.020 0.029 0.007 – 0.009 

 800 – 0.003 0.011 0.004 0.007 0.019 0.011 0.014 0.004 – 0.004 

30 50 0.002 0.158 0.070 0.047 0.182 0.074 0.181 0.000 – 0.094 

 100 0.007 0.096 0.031 0.041 0.110 0.049 0.093 0.008 – 0.043 

 200 0.004 0.055 0.019 0.024 0.065 0.027 0.047 0.006 – 0.020 

 400 0.001 0.028 0.008 0.013 0.033 0.015 0.023 0.003 – 0.010 

 800 – 0.001 0.015 0.005 0.007 0.018 0.008 0.012 0.003 – 0.005 

5. An Example for Multivariate Normality Tests 

We illustrate the multivariate normality tests with real data given by 
Brunner et al. [1]. Table 6 presents the values of γ -GT for the 26 

patients. The 26 patients whose gall bladders had to be removes in 
consequence of a cholelithiasis (without a blockage of the ductus 
choledochus) were selected to take part in a randomized study in which 
26 of the patients were treated with a specific drug. The γ -GT of each 
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patient was determined before the operation ( )1−  and on days 3, 7, and 

10 after the operation. The efficacy of the drug is represented by the 
different profiles of the γ -GT, that is, the existence of an interaction 

between treatment and time. 

Table 6. The postoperative level of γ -GT for the 26 patients with a 
specific drug 

 Day after surgery   Day after surgery 

Patient – 1 3 7 10  Patient – 1 3 7 10 

1 44 12 10 9 26 50 30 29 35 

5 15 14 14 15 27 13 21 29 15 

6 8 10 9 9 29 7 8 7 9 

8 12 17 28 31 33 7 14 25 19 

9 7 26 29 22 36 11 11 12 15 

11 8 10 9 12 37 192 157 92 66 

12 32 226 118 76 38 14 12 20 16 

18 109 104 66 48 42 24 9 10 12 

14 53 49 50 49 44 9 14 16 13 

17 56 162 111 79 45 16 32 28 20 

21 11 15 26 12 47 9 13 12 13 

24 38 100 47 67 49 19 14 13 12 

25 13 167 139 110  50 8 10 10 11 

      Mean 30.19 48.35 36.89 30.58 

Table 7 gives the results for multivariate normality tests, where 
significance level .05.0=α  For original data, we obtain that both           
p-values are zero. Because each p-value is smaller than 0.05, the null 
hypothesis of normality is rejected. Frequently, it is thought that the 
pharmaceutical data is distributed as a log-normal distribution. 
Therefore, the null hypothesis is accepted when we test after logarithm 
transformation. That is, from results of normality tests, we cannot 
assume that original data is distributed as a normal distribution. When 
analyzing this data, we need to transformation or nonparametric analysis 
on the data. 
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Table 7. The results for multivariate normality tests 

Original data 

 Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 

 (2) (3) (4) (5) (6) (7) (8) (9) (1) 

Test statistic 101.4 44.2 190.9 36.5 466.4 395.1 301.1 300.9 127.8 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Data of logarithmic transformation 

 Rc  NTW  NTS  Wc  NS  ∗
NS  Nc  ∗

Nc  MJB 

 (2) (3) (4) (5) (6) (7) (8) (9) (1) 

Test statistic 1.31 2.27 1.35 1.53 2.21 1.76 1.26 1.20 5.72 

p-value 0.520 0.322 0.510 0.466 0.331 0.414 0.532 0.549 0.335 
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